Invariant norms on the p-adic Schrödinger representation

Amit Ophir

The Hebrew University
May 25, 2021

Topological group	Coefficient field	Examples

Real Lie groups $\quad \mathbb{R}$ or $\mathbb{C} \quad L^{2}\left(S L_{2}(\mathbb{R})\right)$
p-adic groups $\quad \mathbb{R}$ or $\mathbb{C} \quad L^{2}\left(\mathbb{Q}_{p}\right)$

- Tate's Thesis
- Smooth representations in automorphic representations
p-adic groups $\quad \mathbb{K} / \mathbb{Q}_{p} \quad C_{0}\left(\mathbb{Q}_{p}, \mathbb{C}_{p}\right)$
- p-adic functional analysis
- p-adic L-functions
- p-adic Langlands
T you are here

In this talk: $\mathbb{K}=\mathbb{C}_{p}$ is the completion (w.r.t. $|\cdot|_{p}$) of an algebraic closure of \mathbb{Q}_{p}.

Fourier transform on $\left(\mathbb{Q}_{p},+\right)$ over C

- C : an algebraically closed field of characteristic zero.
- The space of Schwartz functions

$$
\mathcal{S}\left(\mathbb{Q}_{p}, C\right)=\left\{f: \mathbb{Q}_{p} \rightarrow C \left\lvert\, \begin{array}{l}
f \text { is locally constant and } \\
\text { compactly supported }
\end{array}\right.\right\} .
$$

(There are plenty such functions!)

- Choose a non-trivial smooth character $\psi:\left(\mathbb{Q}_{p},+\right) \rightarrow C^{\times}$.
- The Fourier transform of $f \in \mathcal{S}\left(\mathbb{Q}_{p}, C\right)$ is defined by

$$
\widehat{f}(x)=\mathcal{F}(f)(x)=\int_{\mathbb{Q}_{p}} \psi(x t) f(t) d t
$$

- $\int_{\mathbb{Q}_{p}} d t$ is the Haar functional with $\int_{\mathbb{Q}_{p}} \mathbf{1}_{\mathbb{Z}_{p}}(t) d t=1$.

Fourier transform on $\left(\mathbb{Q}_{p},+\right)$ over \mathbb{C} and \mathbb{C}_{l}

- $\widehat{\hat{f}}(x)=f(-x)$ (if $\operatorname{ker}(\psi)=\mathbb{Z}_{p}$). In particular, $f \mapsto \hat{f}$ is a linear isomorphism.
- For $a \in \mathbb{Q}_{p}$ fixed, $\widehat{f(t+a)}(x)=\psi(-a x) \cdot \hat{f}(x)$.
- For $b \in \mathbb{Q}_{p}$ fixed, $\overline{\psi(b t) \cdot f(t)}(x)=\widehat{f}(x+b)$.

When $C=\mathbb{C}$:

- The Fourier transform is unitary for the inner product

$$
\langle f, g\rangle=\int_{\mathbb{Q}_{p}} f(t) \overline{g(t)} d t
$$

- Extends to an isometric isomorphism $\mathcal{F}: L^{2}\left(\mathbb{Q}_{p}\right) \xrightarrow{\sim} L^{2}\left(\mathbb{Q}_{p}\right)$.
- Fact: $\langle\cdot, \cdot\rangle$ is, up to a scalar, the unique inner product on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$ invariant under translations and multiplication by smooth characters.

Fourier transform on $\left(\mathbb{Q}_{p},+\right)$ over C_{p}

Assume $C=\mathbb{C}_{p}$.

- $\mathcal{S}\left(\mathbb{Q}_{p}\right):=\mathcal{S}\left(\mathbb{Q}_{p}, \mathbb{C}_{p}\right)$.
- No notion of an inner product with values in \mathbb{C}_{p}.
- Next best option: $\|\cdot\|_{\infty}$.
- $C_{0}\left(\mathbb{Q}_{p}\right)$ denotes the completion of $\mathcal{S}\left(\mathbb{Q}_{p}\right)$ with respect to $\|\cdot\|_{\infty}$.
- $\int_{\mathbb{Q}_{p}} d t$ does not extend to continuous functions with compact support.

$$
\int_{\mathbb{Q}_{p}} \mathbf{1}_{p^{n} \mathbb{Z}_{p}}(t) d t=\frac{1}{p^{n}} \in \mathbb{C}_{p} .
$$

- The Fourier transform is not continuous with respect to the sup norm.

Example

Let $n \in \mathbb{Z}$ and detnoe $f(x)=\mathbf{1}_{p^{n} \mathbb{Z}_{p}}(x)$. Then

$$
\widehat{f}(x)=\frac{1}{p^{n}} \cdot \mathbf{1}_{p^{-n} \mathbb{Z}_{p}}(x)
$$

Thus, $\|f\|_{\infty}=1$ while $\|\widehat{f}\|_{\infty}=p^{n}$.

Fourier transform on $\left(\mathbb{Q}_{p},+\right)$ over C_{p}

Theorem (Fresnel - de Mathan, Amice - Escassut, 1970's)

The extension of

$$
\mathcal{F}: \mathcal{S}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow \mathcal{S}\left(\mathbb{Z}_{p}\right)
$$

to

$$
\mathcal{F}: C_{0}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow C\left(\mathbb{Z}_{p}\right)
$$

is not injective.
Fresnel and de Mathan also showed: surjective.
Theorem (Discontinuity, de Shalit - O. 2017)
The graph

$$
\Gamma=\left\{(f, \widehat{f}) \mid f \in \mathcal{S}\left(\mathbb{Q}_{p}\right)\right\} \subset C_{0}\left(\mathbb{Q}_{p}\right) \times C_{0}\left(\mathbb{Q}_{p}\right)
$$

is dense. In other words, for any $g_{1}, g_{2} \in C_{0}\left(\mathbb{Q}_{p}\right)$ and any $\epsilon>0$ there exists $f \in \mathcal{S}\left(\mathbb{Q}_{p}\right)$ such that

$$
\left\|f-g_{1}\right\|_{\infty}<\epsilon \quad \text { and } \quad\left\|\hat{f}-g_{2}\right\|_{\infty}<\epsilon
$$

Fourier transform on $\left(\mathbb{Q}_{p},+\right)$ over C_{p}

- We can reformulate the discontinuity theorem as follows.
- Let $\|\cdot\|^{\wedge}$ be the Fourier norm: $\|f\|^{\wedge}=\|\widehat{f}\|_{\infty}$.
- The discontinuity theorem \Longleftrightarrow there exists no seminorm on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$ which is smaller than both $\|\cdot\|_{\infty}$ and $\|\cdot\|^{\wedge}$.
- Both norms are invariant under translations and multiplication by smooth characters.

We will show:

- Put the previous two results (non-injectivity, discontinuity) under one framework.
- As a substitution to the L^{2}-theory:
- A result about rigidity of the sup norm.
- Partial results about classification of norms on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$ that are invariant under translations and multiplication by smooth characters?

Heisenberg groups

- We fix a positive integer d.
- The standard $2 d$-dimensional symplectic space: $\left(\mathbb{Q}_{p}^{d} \oplus \mathbb{Q}_{p}^{d}, \omega\right)$ where, if $w_{1}=\left(a_{1}, b_{1}\right)$ and $w_{2}=\left(a_{2}, b_{2}\right)$ then

$$
\omega\left(w_{1}, w_{2}\right)=a_{1} \cdot b_{2}-a_{2} \cdot b_{1}=w_{1} \cdot\left(\begin{array}{cc}
0 & I_{d} \\
-I_{d} & 0
\end{array}\right) w_{2}^{t} .
$$

- The Heisenberg group attached to it, $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$, has underlying set

$$
\left(\mathbb{Q}_{p}^{d} \oplus \mathbb{Q}_{p}^{d}\right) \times \mathbb{Q}_{p}
$$

and multiplication

$$
\left[w_{1}, t_{1}\right] \cdot\left[w_{2}, t_{2}\right]=\left[w_{1}+w_{2}, t_{1}+t_{2}+\frac{1}{2} \omega\left(w_{1}, w_{2}\right)\right] .
$$

- The center of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$ is $\left\{[0, t] \mid t \in \mathbb{Q}_{p}\right\}$ and is equal to its commutator subgroup.
- $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$ is a totally disconnected, locally compact topological group.

The Schrödinger representation of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$

- Let $\psi:\left(\mathbb{Q}_{p},+\right) \rightarrow \mathbb{C}_{p}^{\times}$be a non-trivial smooth character.
- $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$ - locally constant, compact support $f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{C}_{p}$.
- The Schrödinger representation $\rho_{\psi}: \mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right) \rightarrow \operatorname{GL}\left(\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)\right)$ is defined by

$$
\left(\rho_{\psi}([w, t]) f\right)(x)=\psi\left(t-\frac{1}{2} a \cdot b\right) \cdot \psi(b \cdot x) \cdot f(x+a)
$$

where $w=(a, b)$.

- Convention: $[w, t] f=\rho_{\psi}([w, t]) f$.

Definition

A rep' V of a t.d. group G is called smooth if $\operatorname{Stab}_{G}(v)$ is open for any $v \in V$.

Theorem (Smooth Stone - von Neumann)

(1) The Schrödinger representation ρ_{ψ} is smooth and irreducible.
(2) Any smooth irreducible representation of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$ with a central character ψ is isomorphic to ρ_{ψ}.

Intertwining operators

- Right action of

$$
\mathrm{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)=\left\{g \in \mathrm{GL}_{2 d}\left(\mathbb{Q}_{p}\right) \mid \omega\left(w_{1} g, w_{2} g\right)=\omega\left(w_{1}, w_{2}\right)\right\}
$$

on $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$ by continuous automorphisms:

$$
g \in \mathrm{Sp}_{2 d}\left(\mathbb{Q}_{p}\right): \quad[w, t] \cdot g=[w g, t]
$$

and $[0, t] \cdot g=[0, t]$.

- For $g \in \operatorname{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$ define a new representation $\rho_{\psi, g}$ of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$ by

$$
\rho_{\psi, g}([w, t])=\rho_{\psi}([w, t] \cdot g)
$$

- $\rho_{\psi, g}$ is a smooth irreducible representation with central character ψ.
- By the Stone-von Neumann theorem, there exists $T_{g}: \rho_{\psi} \xrightarrow{\sim} \rho_{\psi, g}$. Explicitly,

$$
T_{g}([w, t] f)=([w, t] \cdot g) T_{g}(f)
$$

- T_{g} is called intertwining operator, is unique up to a scalar (Schur's lemma).
- $g \mapsto T_{g}$ is a projective representation of $\operatorname{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$.

Remark

$g \mapsto T_{g}$ becomes true representation (the Weil rep') of the Metaplectic group.

Intertwining operators

Example

Let $d=1$. The group $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$ can be identified with the group of matrices of the form

$$
\left(\begin{array}{lll}
1 & a & t \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) .
$$

We have: $\mathrm{Sp}_{2}\left(\mathbb{Q}_{p}\right)=\mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right)$. The Fourier transform is an intertwining operator for $g=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Indeed:

- $[(a, b), t] \cdot g=[(b,-a), t]$.

$$
\widehat{[(a, b), t] f}=[(b,-a), t] \hat{f} \Longleftrightarrow\left\{\begin{array}{l}
\widehat{\frac{f(t+a)}{}(x)}=\psi(-a x) \cdot \widehat{f}(x) \\
\frac{\psi(b t) \cdot f(t)}{}(x)=\widehat{f}(x+b)
\end{array}\right.
$$

Invariant norms and the orbit of the sup norm

- If $\|\cdot\|$ is a $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$-invariant norm on $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$, then $f \mapsto\left\|T_{g}(f)\right\|$ is again an invariant norm. Indeed,

$$
\left\|T_{g}([w, t] f)\right\|=\left\|([w, t] \cdot g) T_{g}(f)\right\|=\left\|T_{g}(f)\right\| .
$$

- A right action of $\mathrm{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$ on the homothety classes of invariant norms.
- Can be shown: T_{g} fixes the homothety class of $\|\cdot\|_{\infty}$ if and only if

$$
g \in \mathbf{P}=\left\{\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right) \in \operatorname{Sp}_{2 \mathrm{~d}}\left(\mathbb{Q}_{\mathrm{p}}\right)\right\} .
$$

- The orbit of the sup norm is in bijection with $\mathbf{G r}=\mathbf{P} \backslash \operatorname{Sp}_{2 d}\left(\mathbb{Q}_{p}\right)$.

Definition

Given $\alpha=\mathbf{P} \cdot g \in \mathbf{G r}$, we denote by $\|\cdot\|_{\alpha}$ the unique norm in the homothety class of $\left\|T_{g}(\cdot)\right\|_{\infty}$ for which $\left\|\mathbf{1}_{\mathbb{Z}_{p}^{d}}(x)\right\|_{\alpha}=1$.

- If $\alpha, \beta \in \mathbf{G r}$ are different, $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are not equivalent.

Simultaneous discontinuity

- Recall: $\left\{(f, \widehat{f}) \mid f \in \mathcal{S}\left(\mathbb{Q}_{p}\right\}\right.$ is dense in $C_{0}\left(\mathbb{Q}_{p}\right) \times C_{0}\left(\mathbb{Q}_{p}\right)$.

Proposition

Let $\alpha_{1}=\mathbf{P} \cdot g_{1}, \ldots, \alpha_{n}=\mathbf{P} \cdot g_{n}$, distinct in $\mathbf{G r}$. Let $T_{g_{1}}, \ldots, T_{g_{n}}$ be corresponding intertwining operators. The following subset is dense.

$$
\left\{\left(T_{g_{1}}(f), \ldots, T_{g_{n}}(f)\right) \mid f \in \mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)\right\} \subset C_{0}\left(\mathbb{Q}_{p}^{d}\right)^{n}
$$

Banach representations

A unitary Banach representation of a group G is a representation of G on a Banach space $(B,\|\cdot\|)$ over \mathbb{C}_{p} such that $\|\cdot\|$ is G-invariant.

Definition

Let $(B,\|\cdot\|)$ be a unitary Banach representation of a group G.
(1) $v \in B$ is called topologically cyclic if for any $w \in B$ and any $\epsilon>0$ there exist $g_{1}, \ldots, g_{n} \in G$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}_{p}$ such that

$$
\left\|w-\sum_{i=1}^{n} \lambda_{i} \cdot g_{i}(v)\right\|<\epsilon .
$$

(2) $v \in B$ is called strongly cyclic if any $w \in B$ can be written as

$$
w=\sum_{g \in G} \lambda_{g} \cdot g(v),
$$

where $\lim _{g} \lambda_{g}=0$ in \mathbb{C}_{p}.

Completions w.r.t. the norms $\|\cdot\|_{\alpha}$

Definition

A unitary Banach representation B of G is called strongly irreducible if any $0 \neq v \in B$ is strongly cyclic.

Notation: for $\alpha \in \mathbf{G r}$, denote by $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}}$ the completion of $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$ w.r.t. $\|\cdot\|_{\alpha}$

Theorem (O. 2020)

Let $\alpha \in \mathbf{G r}$.

- $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}}$ is a strongly irreducible unitary Banach rep' of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$.
- If $\beta \in \mathbf{G r}$ and $\beta \neq \alpha$, then

$$
\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}} \not \approx \mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\beta}} .
$$

A rigidity result for the completion w.r.t. $\|\cdot\|_{\alpha}$

Notation: $\operatorname{Hom}\left(B_{1}, B_{2}\right)$ - continuous $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$-equivariant maps.

Theorem (O. 2020)

Let $(B,\|\cdot\|)$ be a unitary Banach representation of $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$.
(1) Let $T \in \operatorname{Hom}\left(\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}}, B\right)$ non-zero. Then, up to scaling the norm, T is an isometry onto its image.
(2) Let $T \in \operatorname{Hom}\left(B, \mathcal{S}\left(\mathbb{Q}_{p}^{d} \|_{\|\cdot\|_{\alpha}}\right)\right.$ non-zero. Then T is surjective and, up to scaling the norm, induces an isometry

$$
B / \operatorname{ker}(T) \xrightarrow{\sim} \mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}} .
$$

Corollary

For $d=1, C_{0}\left(\mathbb{Q}_{p}\right)$ is a strongly irreducible representation of $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$. If B (as above) is topologically irreducible, the following are equivalent
(1) $\operatorname{Hom}\left(B, C_{0}\left(\mathbb{Q}_{p}\right)\right) \neq 0$.
(2) $\operatorname{Hom}\left(C_{0}\left(\mathbb{Q}_{p}\right), B\right) \neq 0$.
(3) B is isometrically isomorphic to $C_{0}\left(\mathbb{Q}_{p}\right)$.

Rigidity of $\|\cdot\|_{\alpha}$

Main Theorem (Rigidity, O. 2020)

Let $\alpha \in \mathbf{G r}$. Let $\|\cdot\|$ be a $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$-invariant norm on $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$ that is dominated by $\|\cdot\|_{\alpha}\left(\right.$ i.e. $\|\cdot\| \leq D \cdot\|\cdot\|_{\alpha}$). Then $\|\cdot\|=r \cdot\|\cdot\|_{\alpha}$ for some $r>0$.

$$
\begin{array}{l|l|l}
\mathcal{S}\left(\mathbb{Q}_{p}^{d}, \mathbb{C}\right) & \mathcal{S}\left(\mathbb{Q}_{p}^{d}, \mathbb{C}_{l}\right), l \neq p & \mathcal{S}\left(\mathbb{Q}_{p}^{d}, \mathbb{C}_{p}\right) \\
\hline
\end{array}
$$

Uniqueness of invariant norms
Irreducibility of completion
Smooth vectors in completion
Stone - von Neumann theorem

Unique invariant unitary structure.

$$
L^{2}\left(\mathbb{Q}_{p}^{d}\right) \text { top' irr' }
$$

$$
\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)
$$

$$
L^{2}\left(\mathbb{Q}_{p}^{d}\right) \text { - unique irr' }
$$

unitary rep' with central character ψ.

Unique invariant norm: $\|\cdot\|_{\infty}$.
$C_{0}\left(\mathbb{Q}_{p}^{d}, \mathbb{C}_{l}\right)$ strongly irr'.

Each $\|\cdot\|_{\alpha}$ unique among dominated norms.
$\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)_{\|\cdot\|_{\alpha}}$ strongly irr'.
$\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$.
$C_{0}\left(\mathbb{Q}_{p}^{d}, \mathbb{C}_{l}\right)$ - unique cont' irr' rep' with central character ψ.

"Small norms"

- Given a finite subset $I=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \mathbf{G r}$, denote

$$
\|\cdot\|_{I}:=\max \left(\|\cdot\|_{\alpha_{1}},\|\cdot\|_{\alpha_{2}}, \ldots,\|\cdot\|_{\alpha_{n}}\right)
$$

(Call $\|\cdot\|_{I}$ a small norm).

Proposition

Let $\|\cdot\|$ be a $\mathcal{H}_{2 d+1}\left(\mathbb{Q}_{p}\right)$-invariant norm, dominated by $\|\cdot\|_{I}$ for a finite $I \subset \mathbf{G r}$. Then there exists $J \subset I$ such that $\|\cdot\|$ is equivalent to $\|\cdot\|_{J}$.

Corollary

Let $I_{1}, I_{2} \subset \mathbf{G r}$ finite disjoint subsets. There does not exist a seminorm on $\mathcal{S}\left(\mathbb{Q}_{p}^{d}\right)$ which is smaller than both $\|\cdot\|_{I_{1}}$ and $\|\cdot\|_{I_{2}}$.

About the proofs

Two types of methods.
(1) functional analysis:

- Closed graph theorem, open mapping theorem, Baire's category theorem.
- Other arguments special to the p-adic situation (studying the notion of strong irreducibility).
- Those are used to study quotients of the completion of cyclic representations by maximal invariant norms (their universal unitary completion).
(2) q-arithmetic in $C\left(\mathbb{Z}_{p}\right)$:
- Appears in combinatorics, hypergeometric functions, modular forms, physics and more.
- Recently in p-adic Hodge theory (B. Bhatt, M. Morrow, P. Scholze).
- In our work: q-Mahler bases - a family of deformations of the Mahler basis $\left\{\left.\binom{x}{n} \right\rvert\, n \geq 0\right\}$.

q-arithmetic

- The q-analog notation:
- The q-analog of $n \in \mathbb{N}$ is $[n]_{q}:=\frac{q^{n}-1}{q-1}=1+q+\ldots+q^{n-1}$.
- The q-analog of n !

$$
[n]_{q}!:=[1]_{q} \cdot[2]_{q} \cdot \ldots \cdot[n]_{q} .
$$

- The q-analog of the binomial coefficients are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}!\cdot[n-k]_{q}!}
$$

- When $q \in \mathbb{C}_{p}$ and $|q-1|_{p}<1, n \mapsto\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ extends to $\left[\begin{array}{l}x \\ k\end{array}\right]_{q}: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$.
- $\left[\begin{array}{l}x \\ 0\end{array}\right]_{q},\left[\begin{array}{l}x \\ 1\end{array}\right]_{q},\left[\begin{array}{l}x \\ 2\end{array}\right]_{q}, \ldots$ is an orthonormal basis of $C\left(\mathbb{Z}_{p}\right)$.
- Reduce to a rigidity statement for $\|\cdot\|_{\infty}$ on $C\left(\mathbb{Z}_{p}\right)$.
- Let $\|\cdot\|$ be a norm on $C\left(\mathbb{Z}_{p}\right)$ dominated by $\|\cdot\|_{\infty}$ and invariant under translations and multiplications by the smooth characters of \mathbb{Z}_{p}. Normalize it so that $\|\mathbf{1}\|=1$.
- By studying the q-Mahler expansion of $\zeta^{x}\left(\zeta^{p^{n}}=1\right)$ we show that for some q, the q-Mahler basis is an orthonormal basis for $\|\cdot\|$. Therefore, $\|\cdot\|=\|\cdot\|_{\infty}$.

Open problems

$$
d=1 . \text { Points }=\text { equivalence classes of } \mathcal{H}_{3}\left(\mathbb{Q}_{p}\right) \text {-invariant norms on } \mathcal{S}\left(\mathbb{Q}_{p}\right)
$$

- maximal

Open problems

$d=1$. Points $=$ equivalence classes of $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$-invariant norms on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$.

- maximal
(

Open problems
$d=1$. Points $=$ equivalence classes of $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$-invariant norms on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$.
(1) Same point?

"small norms"

$$
\|\cdot\|_{I}=\max _{r \in I}\|\cdot\|_{\sigma}
$$

$I \subset \mathbb{P}^{1}\left(\mathbb{Q}_{\rho}\right)$ finite

Open problems
$d=1$. Points $=$ equivalence classes of $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$-invariant norms on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$.
(1) Same point? \longrightarrow
(2) what about $\mid \cdot \cdot \|_{工}$?
where $|I|=\infty \quad$

- maximal

$$
\cdot\|\cdot\|_{\mathbb{P}^{\prime}\left(\nabla_{p}\right)}=\sup _{\alpha \in \mathbb{P}^{\prime}\left(\mathbb{Q}_{p}\right)}\|\cdot\|_{\alpha}
$$

"small norms"

$$
\|\cdot\|_{I}=\max _{r \in I}\|\cdot\|_{\sigma}
$$

$I \subset \mathbb{P}^{\prime}\left(Q_{\rho}\right)$ finite

Open problems
$d=1$. Points $=$ equivalence classes of $\mathcal{H}_{3}\left(\mathbb{Q}_{p}\right)$-invariant norms on $\mathcal{S}\left(\mathbb{Q}_{p}\right)$.
(1) Same point?
(2) What about $\|\cdot\|_{I}$?
where $|I|=\infty$

$$
\cdot\|\cdot\|_{\mathbb{P}^{\prime}\left(\theta_{p}\right)}=\sup _{r \in \mathbb{P}^{\prime}\left(\theta_{\rho}\right)}\|\cdot\|_{\alpha}
$$

(3) Does exist?

$$
\|\cdot\|_{I}=\max _{q \in I}\|\cdot\|_{\sigma}
$$

$I \subset \mathbb{P}^{1}\left(Q_{\rho}\right)$ finite

