Invariant norms on the p-adic Schrödinger representation

Amit Ophir

The Hebrew University

May 25, 2021

In this talk: $\mathbb{K} = \mathbb{C}_p$ is the completion (w.r.t. $|\cdot|_p$) of an algebraic closure of \mathbb{Q}_p .

Fourier transform on $(\mathbb{Q}_p, +)$ over C

- C: an algebraically closed field of characteristic zero.
- The space of Schwartz functions

$$\mathcal{S}(\mathbb{Q}_p, C) = \left\{ f : \mathbb{Q}_p \to C \mid \begin{array}{c} f \text{ is locally constant and} \\ \text{compactly supported} \end{array} \right\}$$

(There are plenty such functions!)

- Choose a non-trivial smooth character $\psi : (\mathbb{Q}_p, +) \to C^{\times}$.
- The Fourier transform of $f \in \mathcal{S}(\mathbb{Q}_p, C)$ is defined by

$$\hat{f}(x) = \mathcal{F}(f)(x) = \int_{\mathbb{Q}_p} \psi(xt)f(t) \ dt.$$

•
$$\int_{\mathbb{Q}_p} dt$$
 is the Haar functional with $\int_{\mathbb{Q}_p} \mathbf{1}_{\mathbb{Z}_p}(t) dt = 1.$

Fourier transform on $(\mathbb{Q}_p, +)$ over \mathbb{C} and \mathbb{C}_l

•
$$\widehat{\widehat{f}}(x) = f(-x)$$
 (if ker $(\psi) = \mathbb{Z}_p$). In particular, $f \mapsto \widehat{f}$ is a linear isomorphism.
• For $a \in \mathbb{Q}_p$ fixed, $\widehat{f(t+a)}(x) = \psi(-ax) \cdot \widehat{f}(x)$.
• For $b \in \mathbb{Q}_p$ fixed, $\widehat{\psi(bt)} \cdot \widehat{f(t)}(x) = \widehat{f}(x+b)$.
When $C = \mathbb{C}$:

• The Fourier transform is unitary for the inner product

$$\langle f,g \rangle = \int_{\mathbb{Q}_p} f(t)\overline{g(t)} \ dt.$$

- Extends to an isometric isomorphism $\mathcal{F}: L^2(\mathbb{Q}_p) \xrightarrow{\sim} L^2(\mathbb{Q}_p)$.
- Fact: $\langle \cdot, \cdot \rangle$ is, up to a scalar, the unique inner product on $\mathcal{S}(\mathbb{Q}_p)$ invariant under translations and multiplication by smooth characters.

Fourier transform on $(\mathbb{Q}_p, +)$ over C_p

Assume $C = \mathbb{C}_p$.

- $\mathcal{S}(\mathbb{Q}_p) := \mathcal{S}(\mathbb{Q}_p, \mathbb{C}_p).$
- No notion of an inner product with values in \mathbb{C}_p .
- Next best option: $\|\cdot\|_{\infty}$.
- $C_0(\mathbb{Q}_p)$ denotes the completion of $\mathcal{S}(\mathbb{Q}_p)$ with respect to $\|\cdot\|_{\infty}$.
- $\int_{\mathbb{Q}_p} dt$ does not extend to continuous functions with compact support.

$$\int_{\mathbb{Q}_p} \mathbf{1}_{p^n \mathbb{Z}_p}(t) \ dt = \frac{1}{p^n} \in \mathbb{C}_p.$$

• The Fourier transform is not continuous with respect to the sup norm.

Example

Let $n \in \mathbb{Z}$ and detnoe $f(x) = \mathbf{1}_{p^n \mathbb{Z}_p}(x)$. Then

$$\widehat{f}(x) = \frac{1}{p^n} \cdot \mathbf{1}_{p^{-n} \mathbb{Z}_p}(x).$$

Thus, $\|f\|_{\infty} = 1$ while $\|\widehat{f}\|_{\infty} = p^{n}$.

Fourier transform on $(\mathbb{Q}_p, +)$ over C_p

Theorem (Fresnel - de Mathan, Amice - Escassut, 1970's)

The extension of

$$\mathcal{F}: \mathcal{S}(\mathbb{Q}_p/\mathbb{Z}_p) \to \mathcal{S}(\mathbb{Z}_p)$$

to

$$\mathcal{F}: C_0(\mathbb{Q}_p/\mathbb{Z}_p) \to C(\mathbb{Z}_p)$$

is not injective. Fresnel and de Mathan also showed: surjective.

Theorem (Discontinuity, de Shalit - O. 2017)

The graph

$$\Gamma = \{ (f, \widehat{f}) \mid f \in \mathcal{S}(\mathbb{Q}_p) \} \subset C_0(\mathbb{Q}_p) \times C_0(\mathbb{Q}_p)$$

is dense. In other words, for any $g_1, g_2 \in C_0(\mathbb{Q}_p)$ and any $\epsilon > 0$ there exists $f \in \mathcal{S}(\mathbb{Q}_p)$ such that

$$\left\|f-g_1\right\|_{\infty}<\epsilon \quad \text{and} \quad \left\|\widehat{f}-g_2\right\|_{\infty}<\epsilon.$$

Fourier transform on $(\mathbb{Q}_p, +)$ over C_p

• We can reformulate the discontinuity theorem as follows.

- Let $\|\cdot\|^{\wedge}$ be the Fourier norm: $\|f\|^{\wedge} = \|\widehat{f}\|_{\infty}$.
- The discontinuity theorem \iff there exists no seminorm on $\mathcal{S}(\mathbb{Q}_p)$ which is smaller than both $\|\cdot\|_{\infty}$ and $\|\cdot\|^{\wedge}$.
- Both norms are invariant under translations and multiplication by smooth characters.

We will show:

- Put the previous two results (non-injectivity, discontinuity) under one framework.
- As a substitution to the L^2 -theory:
 - A result about rigidity of the sup norm.
 - Partial results about classification of norms on $S(\mathbb{Q}_p)$ that are invariant under translations and multiplication by smooth characters?

Heisenberg groups

- We fix a positive integer d.
- The standard 2d-dimensional symplectic space: $(\mathbb{Q}_p^d \oplus \mathbb{Q}_p^d, \omega)$ where, if $w_1 = (a_1, b_1)$ and $w_2 = (a_2, b_2)$ then

$$\omega(w_1, w_2) = a_1 \cdot b_2 - a_2 \cdot b_1 = w_1 \cdot \begin{pmatrix} 0 & I_d \\ -I_d & 0 \end{pmatrix} w_2^t.$$

• The Heisenberg group attached to it, $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$, has underlying set

$$\left(\mathbb{Q}_p^d\oplus\mathbb{Q}_p^d
ight) imes\mathbb{Q}_p$$

and multiplication

$$[w_1, t_1] \cdot [w_2, t_2] = [w_1 + w_2, t_1 + t_2 + \frac{1}{2}\omega(w_1, w_2)].$$

- The center of $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ is $\{[0,t] \mid t \in \mathbb{Q}_p\}$ and is equal to its commutator subgroup.
- $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ is a totally disconnected, locally compact topological group.

The Schrödinger representation of $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$

- Let $\psi : (\mathbb{Q}_p, +) \to \mathbb{C}_p^{\times}$ be a non-trivial smooth character.
- $\mathcal{S}(\mathbb{Q}_p^d)$ locally constant, compact support $f: \mathbb{Q}_p^d \to \mathbb{C}_p$.
- The Schrödinger representation $\rho_{\psi}: \mathcal{H}_{2d+1}(\mathbb{Q}_p) \to \mathrm{GL}(\mathcal{S}(\mathbb{Q}_p^d))$ is defined by

$$(\rho_{\psi}([w,t])f)(x) = \psi\left(t - \frac{1}{2}a \cdot b\right) \cdot \psi(b \cdot x) \cdot f(x+a)$$

where w = (a, b).

• Convention: $[w,t]f = \rho_{\psi}([w,t])f$.

Definition

A rep' V of a t.d. group G is called *smooth* if $\operatorname{Stab}_G(v)$ is open for any $v \in V$.

Theorem (Smooth Stone - von Neumann)

() The Schrödinger representation ρ_{ψ} is smooth and irreducible.

Any smooth irreducible representation of H_{2d+1}(Q_p) with a central character ψ is isomorphic to ρ_ψ.

Intertwining operators

• Right action of

 $\operatorname{Sp}_{2d}(\mathbb{Q}_p) = \{g \in \operatorname{GL}_{2d}(\mathbb{Q}_p) \mid \omega(w_1g, w_2g) = \omega(w_1, w_2)\}$

on $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ by continuous automorphisms:

$$g\in \mathrm{Sp}_{2d}(\mathbb{Q}_p): \ [w,t]\cdot g = [wg,t],$$

and $[0,t] \cdot g = [0,t].$

• For $g \in \mathrm{Sp}_{2d}(\mathbb{Q}_p)$ define a new representation $\rho_{\psi,g}$ of $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ by

$$\rho_{\psi,g}([w,t]) = \rho_{\psi}([w,t] \cdot g).$$

- $\rho_{\psi,g}$ is a smooth irreducible representation with central character ψ .
- By the Stone-von Neumann theorem, there exists $T_g: \rho_\psi \xrightarrow{\sim} \rho_{\psi,g}$. Explicitly,

$$T_g([w,t]f) = ([w,t] \cdot g) T_g(f).$$

• T_g is called intertwining operator, is unique up to a scalar (Schur's lemma). • $g \mapsto T_g$ is a projective representation of $\operatorname{Sp}_{2d}(\mathbb{Q}_p)$.

Remark

 $g\mapsto T_g$ becomes true representation (the Weil rep') of the Metaplectic group.

Example

Let d = 1. The group $\mathcal{H}_3(\mathbb{Q}_p)$ can be identified with the group of matrices of the form

$$\begin{pmatrix} 1 & a & t \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$$

We have: $\operatorname{Sp}_2(\mathbb{Q}_p) = \operatorname{SL}_2(\mathbb{Q}_p)$. The Fourier transform is an intertwining operator for $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Indeed: • $[(a,b),t] \cdot g = [(b,-a),t]$. • $\widehat{[(a,b),t]f} = [(b,-a),t]\widehat{f} \iff \begin{cases} \widehat{f(t+a)}(x) = \psi(-ax) \cdot \widehat{f}(x) \\ \overline{\psi(bt)} \cdot \overline{f(t)}(x) = \widehat{f}(x+b) \end{cases}$.

Invariant norms and the orbit of the sup norm

• If $\|\cdot\|$ is a $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ -invariant norm on $\mathcal{S}(\mathbb{Q}_p^d)$, then $f \mapsto \|T_g(f)\|$ is again an invariant norm. Indeed,

 $||T_g([w,t]f)|| = ||([w,t] \cdot g)T_g(f)|| = ||T_g(f)||.$

- A right action of $\operatorname{Sp}_{2d}(\mathbb{Q}_p)$ on the homothety classes of invariant norms.
- $\bullet\,$ Can be shown: T_g fixes the homothety class of $\|\cdot\|_\infty$ if and only if

$$g \in \mathbf{P} = \left\{ \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in \operatorname{Sp}_{2d}(\mathbb{Q}_p) \right\}.$$

• The orbit of the sup norm is in bijection with $\mathbf{Gr} = \mathbf{P} \setminus \mathrm{Sp}_{2d}(\mathbb{Q}_p)$.

Definition

Given
$$\alpha = \mathbf{P} \cdot g \in \mathbf{Gr}$$
, we denote by $\|\cdot\|_{\alpha}$ the unique norm in the homothety class of $\|T_g(\cdot)\|_{\infty}$ for which $\|\mathbf{1}_{\mathbb{Z}_p^d}(x)\|_{\alpha} = 1$.

• If $\alpha, \beta \in \mathbf{Gr}$ are different, $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are not equivalent.

• Recall: $\{(f, \hat{f}) \mid f \in \mathcal{S}(\mathbb{Q}_p)\}$ is dense in $C_0(\mathbb{Q}_p) \times C_0(\mathbb{Q}_p)$.

Proposition

Let $\alpha_1 = \mathbf{P} \cdot g_1, ..., \alpha_n = \mathbf{P} \cdot g_n$, distinct in **Gr**. Let $T_{g_1}, ..., T_{g_n}$ be corresponding intertwining operators. The following subset is dense.

$$\left\{\left(T_{g_1}(f),...,T_{g_n}(f)\right) \mid f \in \mathcal{S}(\mathbb{Q}_p^d)\right\} \subset C_0(\mathbb{Q}_p^d)^n.$$

Banach representations

A unitary Banach representation of a group G is a representation of G on a Banach space $(B, \|\cdot\|)$ over \mathbb{C}_p such that $\|\cdot\|$ is G-invariant.

Definition

Let $(B, \|\cdot\|)$ be a unitary Banach representation of a group G.

• $v \in B$ is called *topologically cyclic* if for any $w \in B$ and any $\epsilon > 0$ there exist $g_1, ..., g_n \in G$ and $\lambda_1, ..., \lambda_n \in \mathbb{C}_p$ such that

$$\left\| w - \sum_{i=1}^{n} \lambda_i \cdot g_i(v) \right\| < \epsilon.$$

2 $v \in B$ is called *strongly cyclic* if any $w \in B$ can be written as

$$w = \sum_{g \in G} \lambda_g \cdot g(v),$$

where $\lim_{g} \lambda_g = 0$ in \mathbb{C}_p .

Definition

A unitary Banach representation B of G is called *strongly irreducible* if any $0 \neq v \in B$ is strongly cyclic.

Notation: for $\alpha \in \mathbf{Gr}$, denote by $\mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\alpha}}$ the completion of $\mathcal{S}(\mathbb{Q}_p^d)$ w.r.t. $\|\cdot\|_{\alpha}$

Theorem (O. 2020)

Let $\alpha \in \mathbf{Gr}$.

- $S(\mathbb{Q}_p^d)_{\|\cdot\|_{\infty}}$ is a strongly irreducible unitary Banach rep' of $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$.
- If $\beta \in \mathbf{Gr}$ and $\beta \neq \alpha$, then

$$\mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\alpha}} \not\simeq \mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\beta}}.$$

A rigidity result for the completion w.r.t. $\|\cdot\|_{\alpha}$

Notation: Hom (B_1, B_2) - continuous $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ -equivariant maps.

Theorem (O. 2020)

Let $(B, \|\cdot\|)$ be a unitary Banach representation of $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$.

- Let $T \in Hom(\mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\alpha}}, B)$ non-zero. Then, up to scaling the norm, T is an isometry onto its image.
- **2** Let $T \in \text{Hom}(B, \mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\alpha}})$ non-zero. Then T is surjective and, up to scaling the norm, induces an isometry

$$B/\ker(T) \xrightarrow{\sim} \mathcal{S}(\mathbb{Q}_p^d)_{\|\cdot\|_{\alpha}}.$$

Corollary

For d = 1, $C_0(\mathbb{Q}_p)$ is a strongly irreducible representation of $\mathcal{H}_3(\mathbb{Q}_p)$. If B (as above) is topologically irreducible, the following are equivalent

- $Imm(B, C_0(\mathbb{Q}_p)) \neq 0.$
- $eace Hom(C_0(\mathbb{Q}_p), B) \neq 0.$
- **3** B is isometrically isomorphic to $C_0(\mathbb{Q}_p)$.

Rigidity of $\left\|\cdot\right\|_{\alpha}$

Main Theorem (Rigidity, O. 2020)

Let $\alpha \in \mathbf{Gr}$. Let $\|\cdot\|$ be a $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ -invariant norm on $\mathcal{S}(\mathbb{Q}_p^d)$ that is dominated by $\|\cdot\|_{\alpha}$ (i.e. $\|\cdot\| \leq D \cdot \|\cdot\|_{\alpha}$). Then $\|\cdot\| = r \cdot \|\cdot\|_{\alpha}$ for some r > 0.

	$\mathcal{S}(\mathbb{Q}_p^d,\mathbb{C})$	$\left \mathcal{S}(\mathbb{Q}_p^d, \mathbb{C}_l), \ l \neq p \right.$	$\mathcal{S}(\mathbb{Q}_p^d,\mathbb{C}_p)$
Uniqueness of invariant norms	Unique invariant unitary structure.	Unique invariant norm: $\left\ \cdot\right\ _{\infty}$.	Each $\left\ \cdot\right\ _{\alpha}$ unique among dominated norms.
Irreducibility of completion	$L^2(\mathbb{Q}_p^d)$ top' irr'	$C_0(\mathbb{Q}_p^d,\mathbb{C}_l)$ strongly irr'.	$\mathcal{S}(\mathbb{Q}_p^d)_{\ \cdot\ _lpha}$ strongly irr'.
Smooth vectors in completion	$\mathcal{S}(\mathbb{Q}_p^d).$	$\mathcal{S}(\mathbb{Q}_p^d).$	$\mathcal{S}(\mathbb{Q}_p^d).$
Stone - von Neumann theorem	$L^2(\mathbb{Q}_p^d)$ - unique irr' unitary rep' with central character ψ .	$ \begin{array}{c} C_0(\mathbb{Q}_p^d,\mathbb{C}_l) \text{ - unique} \\ \text{cont' irr' rep' with} \\ \text{central character } \psi. \end{array} $?

Invariant norms

Amit Ophir

"Small norms"

• Given a finite subset $I = \{\alpha_1, ..., \alpha_n\} \subset \mathbf{Gr}$, denote

$$\|\cdot\|_I := \max(\|\cdot\|_{\alpha_1}, \|\cdot\|_{\alpha_2}, ..., \|\cdot\|_{\alpha_n}).$$

(Call $\|\cdot\|_I$ a small norm).

Proposition

Let $\|\cdot\|$ be a $\mathcal{H}_{2d+1}(\mathbb{Q}_p)$ -invariant norm, dominated by $\|\cdot\|_I$ for a finite $I \subset \mathbf{Gr}$. Then there exists $J \subset I$ such that $\|\cdot\|$ is equivalent to $\|\cdot\|_J$.

Corollary

Let $I_1, I_2 \subset \mathbf{Gr}$ finite disjoint subsets. There does not exist a seminorm on $\mathcal{S}(\mathbb{Q}_p^d)$ which is smaller than both $\|\cdot\|_{I_1}$ and $\|\cdot\|_{I_2}$.

About the proofs

Two types of methods.

- Inctional analysis:
 - Closed graph theorem, open mapping theorem, Baire's category theorem.
 - Other arguments special to the *p*-adic situation (studying the notion of strong irreducibility).
 - Those are used to study quotients of the completion of cyclic representations by maximal invariant norms (their universal unitary completion).
- **2** *q*-arithmetic in $C(\mathbb{Z}_p)$:
 - Appears in combinatorics, hypergeometric functions, modular forms, physics and more.
 - Recently in *p*-adic Hodge theory (B. Bhatt, M. Morrow, P. Scholze).
 - In our work: q-Mahler bases a family of deformations of the Mahler basis $\{\binom{x}{n} \mid n \ge 0\}.$

q-arithmetic

- The *q*-analog notation:
 - The q-analog of $n \in \mathbb{N}$ is $[n]_q := \frac{q^n 1}{q 1} = 1 + q + \ldots + q^{n-1}$.
 - The *q*-analog of *n*!

$$[n]_q! := [1]_q \cdot [2]_q \cdot \ldots \cdot [n]_q.$$

- The q-analog of the binomial coefficients are

$$\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]_q!}{[k]_q! \cdot [n-k]_q!}.$$

- When $q \in \mathbb{C}_p$ and $|q-1|_p < 1$, $n \mapsto {n \brack k}_q$ extends to ${x \brack k}_q : \mathbb{Z}_p \to \mathbb{C}_p$.
- $\begin{bmatrix} x \\ 0 \end{bmatrix}_q, \begin{bmatrix} x \\ 1 \end{bmatrix}_q, \begin{bmatrix} x \\ 2 \end{bmatrix}_q, \dots$ is an orthonormal basis of $C(\mathbb{Z}_p)$.
- Reduce to a rigidity statement for $\|\cdot\|_{\infty}$ on $C(\mathbb{Z}_p)$.
- Let $\|\cdot\|$ be a norm on $C(\mathbb{Z}_p)$ dominated by $\|\cdot\|_{\infty}$ and invariant under translations and multiplications by the smooth characters of \mathbb{Z}_p . Normalize it so that $\|\mathbf{1}\| = 1$.
- By studying the *q*-Mahler expansion of ζ^x ($\zeta^{p^n} = 1$) we show that for some *q*, the *q*-Mahler basis is an orthonormal basis for $\|\cdot\|$. Therefore, $\|\cdot\| = \|\cdot\|_{\infty}$.

